Parameterized Counting of Trees, Forests and Matroid Bases

نویسندگان

  • Cornelius Brand
  • Marc Roth
چکیده

We investigate the complexity of counting trees, forests and bases of matroids from a parameterized point of view. It turns out that the problems of computing the number of trees and forests with k edges are #W[1]-hard when parameterized by k. Together with the recent algorithm for deterministic matrix truncation by Lokshtanov et al. (ICALP 2015), the hardness result for k-forests implies #W[1]-hardness of the problem of counting bases of a matroid when parameterized by rank or nullity, even if the matroid is restricted to be representable over a field of characteristic 2. We complement this result by pointing out that the problem becomes fixed parameter tractable for matroids represented over a fixed finite field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Restricted Homomorphisms via Möbius Inversion over Matroid Lattices

We present a framework for the complexity classification of parameterized counting problems that can be formulated as the summation over the numbers of homomorphisms from small pattern graphs H1, . . . ,H` to a big host graph G with the restriction that the coefficients correspond to evaluations of the Möbius function over the lattice of a graphic matroid. This generalizes the idea of Curticape...

متن کامل

On the number of bases of bicircular matroids

Let t(G) be the number of spanning trees of a connected graph G, and let b(G) be the number of bases of the bicircular matroid B(G). In this paper we obtain bounds relating b(G) and t(G), and study in detail the case where G is a complete graph Kn or a complete bipartite graph Kn,m.

متن کامل

Random Sampling and Greedy Sparsiication for Matroid Optimization Problems

Random sampling is a powerful tool for gathering information about a group by considering only a small part of it. We discuss some broadly applicable paradigms for using random sampling in combinatorial optimization, and demonstrate the eeectiveness of these paradigms for two optimization problems on matroids: nding an optimum matroid basis and packing disjoint matroid bases. Applications of th...

متن کامل

A New Approach for Speeding Up Enumeration Algorithms and Its Application for Matroid Bases

We propose a new approach for speeding up enumeration algorithms. The approach does not rely on data structures deeply, instead utilizes analysis of computation time. It speeds enumeration algorithms for directed spanning trees, matroid bases, and some bipartite matching problems. We show one of these improved algorithms: one for enumerating matroid bases. For a given matroid M with m elements ...

متن کامل

Sums of squares and negative correlation for spanning forests of series parallel graphs

We provide new evidence that spanning forests of graphs satisfy the same negative correlation properties as spanning trees, derived from Lord Rayleigh’s monotonicity property for electrical networks. The main result of this paper is that the Rayleigh difference for the spanning forest generating polynomial of a series parallel graph can be expressed as a certain positive sum of monomials times ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017